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Abstract

The boundary layer and heat transfer equations for a non-Newtonian #uid, represented by a power-law model, over
a porous wedge is studied. The free stream velocity, the surface temperature variations, and the injection velocity at the
surface are assumed variables. Similar and non-similar solutions are presented and the restrictions for these cases are
studied. The results are presented for velocity and temperature pro"les for various values of the dimensionless numbers.
The e!ects of the di!erent parameters on the skin friction co-e$cient and the local heat transfer co-e$cient are also
studied. Published by Elsevier Science Ltd.
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1. Introduction

Mechanics of non-linear #uids present a special
challenge to engineers, physicists, and mathematic-
ians. The non-linearity can manifest itself in a var-
iety of ways. One of the simplest ways in which the
viscoelastic #uids have been classi"ed is the meth-
odology given by Rivlin and Ericksen [1] and
Truesdell and Noll [2], who present constitutive
relations for the stress tensor T as a function of the
symmetric part of the velocity gradient D, and its
higher (total) derivatives. (Another class of models
is the rate-type #uid models, such as Oldroyd [3]
model. A recent review is given by Rajagopal
and Srinivasa [4]). Fluids of di!erential type

have attracted much attention, as well as much
controversy, in the last few decades. We refer the
reader to Dunn and Rajagopal [5] for a complete
and thorough discussion of all the relevant issues.
The major attractiveness of these models is the fact
that the constitutive relations, whether we take the
second- or the third-grade #uids since they have
been studied the most, are that they are derived
based on "rst principles and unlike many other
&phenomenological' models (cf. Reiner [6]), there
are no curve-"ttings or parameters to adjust.
Though, in both of these grade models, there are
material properties that need to be measured. At
the same time, the &sign' of these material para-
meters and the stability or instability of the
motions have caused a certain degree of misunder-
standing. These issues for the second- and third-
grade #uids have been discussed in detail by Dunn
and Fosdick [7], and Fosdick and Rajagopal [8],
respectively.
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The stress in a third grade #uid is given by [2]
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when v denotes the velocity "eld, grad is the gradi-
ent operator, and d/dt is the material time deriva-
tive, which is de"ned by
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where �/�t is the partial derivative with respect to
time. A detailed thermodynamic analysis of the
model, represented by Eq. (1) is given by Fosdick
and Rajagopal [8]. They showed that if all the
motions of the #uid are to be compatible with
thermodynamics in the sense that these motions
meet the Clausius}Duhem inequality and if it is
assumed that the speci"c Helmholtz free energy is
a minimum when the #uid is locally at rest, then

�*0, �
�
*0,

��
�
#�

�
�)�24��

�
,

�
�
"�

�
"0, �

�
*0. (5)

Therefore, the constitutive relation for a thermo-
dynamically compatible #uid of grade three be-
comes
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If the normal stress parameters �
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where the quantity in the parenthesis can be
thought of as an e!ective shear-dependent viscos-
ity.Mansutti and Rajagopal [9] andMansutti et al.
[49] generalized Eq. (7) to obtain a power-law-type
model:
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where m is the power-law exponent; when m(0,
the #uid is shear thinning, while if m'0 the #uid is
shear thickening. Therefore, we can see that one of
the shortcomings of the grade-type #uids, i.e., their
inability to have shear dependent viscosity can be
overcome by a generalization of a type given by
Eq. (8). Similarly, if we go to Eq. (1) and assume
�
�
"�

�
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�
"0, we obtain the model for the

second grade #uid
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This model also has a constant shear viscosity.
Man and Sun [10] presented a modi"ed form of
Eq. (9) so that the viscosity could depend on the
rate of deformation:
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when m is a material parameter, similar to Eq. (8).
Gupta and Massoudi [11] generalized this rela-
tionship even further by assuming a temperature-
dependent viscosity of the type

�(�)"�
�
e���. (11)

From this brief discussion, we can see that by giving
an appropriate structure to the viscosity of a second-
grade #uid (cf. Eq. (10)), we not only can have the
normal stress e!ects but also a shear-dependent vis-
cosity. Therefore, in Eq. (10), if �

�
"�

�
"0, we have
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Now, a power-law #uid (cf. [12, p. 44]) in its
properly frame-invariant form is given by
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where K and 	 are parameters that need to be
determined empirically. A comparison of these
equations reveal that m"n!1 and K"�.
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In the last few decades, interest in the boundary
layer #ow of non-Newtonian #uids, whether the
second-grade #uids, or the power-law #uids has
increased (cf. Srivatsava [13], Rajeswari and
Rathna [14], Beard and Walters [15] for the early
works on the grade-type #uids and Acrivos et al.
[16] and Schowalter [17] for the early works on
the power-law #uids). The boundary layer prob-
lems that have been studied, using a grade-type
#uid, are the stagnation #ow, #ow over a #at plate,
and #ow over a stretching sheet. Rajagopal et al.
[18] gave one of the "rst systematic approaches to
the boundary layer #ow of second-grade #uids.
Rajagopal et al. [19] gave non-similar solutions for
#ow of a second-grade #uid over a wedge. Ra-
jagopal et al. [20] studied the #ow of such a #uid
over a stretching sheet. Rajagopal and Gupta [20]
obtained an exact solution for the same #uid over
a porous plate. These works were followed by Ra-
jagopal et al. [21] where non-similar solutions were
obtained for #ow over a stretching sheet with uniform
#ow stream. These studies motivated Massoudi and
Ramezan [22,23] to look at the e!ect of injection or
suction on the #ow and heat transfer of second-grade
#uids. Garg and Rajagopal [24] also provided
a pseudo-similarity solution for #ow of a second-
grade #uid over a wedge. In recent years, Pakdemirli
[25,26] has provided extensive studies for the bound-
ary layer #ows of non-Newtonial #uids. At the
same time, Hsu et al. [27}29] have looked at the
#ow and heat transfer problems involving a sec-
ond-grade #uid over a wedge and triangular "ns.
(cf. [50] [51] and [52] for additional studies).
For the power-law #uids, due to their simplicity,
there has beenmore similar and non-similar solutions
for boundary layers over external surfaces starting
with the works of Schowalter [17] and Acrivos et al.
[16]. A very thorough and updated review of this
subject is given by Pakdemirli [25]. The e!ect of
wall mass injection on the #ow of a non-Newtonian
#uid over a #at plate was investigated by Thom-
pson and Snyder [30]. The interesting result from
this problem was that of drag reduction at the wall
due to injection. It was observed that a similarity
solution existed only if the injection velocity had an
x variation of the form v

�
&x�������	.

Numerical results were presented for the velocity
pro"les, skin-friction coe$cient, displacement

thickness parameter, and momentum thickness
parameter for n values in the range 0.1)n)2.5
and mass injection parameter in the range
10�
}1.0. The primary reason for studying the ef-
fect of injection is that this is one of the mechanisms
to reduce the drag at the surface (cf. [31}35]).
Later Kim and Eraslan [36] studied the bound-
ary-layer #ow of a power-law #uid over wedges
with wall mass injection consistent with the condi-
tion for the existence of similarity solutions. It was
indicated that this condition corresponded to
the injection velocity variation of the form
v
�

&x�������	��	�����	. Numerical results were pre-
sented for the velocity pro"les and skin friction
coe$cient for two di!erent wedge angle para-
meters, �

�
and �

�
, for 0.25)n)1.5. It was concluded

that drag could be reduced considerably by the wall
mass injection, and the degree of the reduction
depended on the non-Newtonian #ow index, but
not directly on the wedge angle.
One of the few similarity solutions for the non-
Newtonian #uid thermal boundary layers was re-
ported by Lee and Ames [37]. The major di$culty
encountered in analyzing non-Newtonian #uid sys-
tems stems from the non-linearities in the equation
of motion. This factor limits the applicability of
similarity analysis to the energy equation. It was
concluded that the energy equation for external
#ow of power-law #uids with forced convection
admits similarity solutions only for very restricted
conditions: the #ows about an isothermal, right
angle wedge (m"�

�
) and the #ow past a #at plate

(m"0.0). Later, Thompson and Snyder [38] con-
sidered the problem of laminar velocity and ther-
mal boundary layers in power-law #uids past
external surfaces with surface #uid injection or suc-
tion. They presented data for the case of a #at plate
with uniform wall temperature. Their approach
was that of obtaining solutions of the momentum
equation which were completely similar and of the
energy equation which were similar in the sense of
local similarity.
One frequently used concept in the solution of
non-similarity boundary layer is the principle of
local similarity. In this approach, the boundary
layer equations are transformed, using suitable
transformation, and divested of non-similar terms,
are then applied locally and independently at
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Fig. 1. System coordinates and geometry.

di!erent streamwise locations. Sparrow et al. [39]
studied the causes of non-similarities. Three di!er-
ent cases were considered: non-similarity caused by
(a) spatial variations in the freestream velocity, (b)
surface mass transfer, and (c) transverse curvature.
They introduced the method of local non-similarity
and indicated that this method preserved the most
attractive aspects of the local similarity model; that
is, local solutions which are independent of the
upstream information are obtainable and the par-
tial di!erential equations are reduced to ordinary
di!erential equations. Several boundary-layer velo-
city problems were solved, including Howarth's
retarded #ow, cylinder in cross#ow, #at plate with
uniform surface mass transfer, and cylinder in lon-
gitudinal #ow. The three-equation model and two-
equation model of the local non-similarity method
showed excellent agreement with that of the "nite
di!erence method by Catherall et al. [40] when the
skin friction was plotted versus the dimensionless
streamwise coordinate � for the #ow over of a #at
plate with uniform blowing at the surface placed in
an incompressible Newtonian #uid.
Afterwards, Sparrow and Yu [41] investigated
a class of thermal boundary-layer problems which
do not admit similarity solutions. Speci"cally, they
dealt with the solution of non-similar boundary
layers in the presence of surface mass transfer,
transverse curvature, streamwise variation of the
freestream velocity, and streamwise variation of the
surface temperature. One classic example, which is
related to our study, was that of a #at plate aligned
parallel to a uniform freestream #ow, with x denot-
ing the streamwise coordinate and y the transverse
coordinate. It is known that if there is surface mass
transfer characterized by an injection velocity
v
�

&x����, then the similarity solutions are pos-
sible. Otherwise the velocity boundary layer would
be non-similar. In particular, the case of uniform
mass transfer was studied and temperature pro"les
and local heat transfer coe$cients were presented.
The three- and two-equation model of the local
non-similarity thermal boundary-layer equations
are in excellent agreement with a series solution
which was performed by Wanous et al. [42] when
the local heat transfer coe$cients were plotted ver-
sus the dimensionless streamwise coordinate � for
the #at plate with uniform surface mass transfer.

2. Statement of problem

The problem that we will study is the steady-
state, laminar forced convection heat transfer for
a non-isothermal wedge with arbitrary lateral mass
transfer placed in a power-law non-Newtonian in-
compressible #uid. Fig. 1 illustrates the geometry of
the problem and the corresponding coordinate sys-
tem. The surface mass injection velocity and the
wall temperature variations are considered to be of
the arbitrary power-law forms. Results for the skin
friction, temperature distribution, and local heat
transfer coe$cients are to be determined for two
di!erent Prandtl numbers. The e!ect of non-New-
tonial #ow index, variations of wall temperature
and wall mass injection for a #at plate and a right
angle wedge on the thermal characteristics of the
#ow are also examined.
Among the methods available for solving ther-
mal boundary-layer problems which do not admit
similarity solutions, the method of local similarity
seems to be the one most frequently used, owing to
its conceptual and computational simplicity. One
interesting aspect of the local similarity method is
that the solution at a particular streamwise loca-
tion can be found without having to perform calcu-
lations at upstream locations. A second advantage
of this method is that once the governing equations
are transformed properly, they could be treated as
ordinary di!erential equations and resemble those
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for similarity boundary layers. However, as Spar-
row and Yu [41] have mentioned, one serious
problem in applying the local-similarity method is
that the results it provides are of uncertain accu-
racy. The main reason is thought to be the discard-
ing of certain streamwise derivatives in the
transformed governing equations, and there seems
to be no clear way to establish the e!ect of these
simpli"cations on the "nal results. The devised lo-
cal non-similarity method not only preserves the
two attractive features of the local similarity
method outlined above, but also retains all terms in
the momentum and energy equations. In contrast
to the local-similarity method where certain terms
were deleted in the momentum and energy equa-
tion, this approach deletes certain prescribed terms
only from the subsidiary equations (auxiliary equa-
tions). Based on this, it is expected that the local
non-similarity approach should give more accurate
results than those from local similarity solutions.
This issue and other relevant matters are discussed
in the books by Na [43], and Seshadri and Na [44].

3. Governing equations

The basic governing equations are the conserva-
tion of mass, the conservation of linear momentum,
and the energy equation. These are

��
�t

#div (�v)"0, (15)

�
dv

dt
"divT#�b, (16)

�
d
dt

"T )L!div q#�r, (17)

where � is the density, b is the body force,  is the
speci"c internal energy, L is the velocity gradient,
q is the heat #ux vector, and r is the radiant heating.
Since we are assuming that the #uid can undergo
only isochoric motion, Eq. (15) reduces to

div v"0. (18)

The term T )L represents the viscous dissipation.
We neglect the e!ect of radiation and assume that

q is given by the Fourier's conduction law

q"!k grad¹, (19)

where ¹ is the temperature, and k is the thermal
conductivity, which is assumed to be constant, and
the stress tensor T is given by Eq. (13). Substituting
Eqs. (13) and (19) in (16) and (17), and making the
appropriate assumptions within the boundary
layer theory (cf. [45]), in Cartesian coordinates, the
conservation of mass, the boundary layer, and the
energy equations become, respectively,
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where u and v are the velocity components along
the direction of the #ow and normal to the #ow,
respectively, ¹ is the temperature and � is the
thermal di!usivity.
The boundary conditions are given as

at y"0 (at the wall):

u"0, v"v
�
(x), ¹"¹

�
(x) (23)

and as yPR: u";(x), ¹"¹
�
. (24)

The "rst term on the right-hand side of the mo-
mentum equation (21) represents the e!ect of the
axial pressure gradient which exists due to the
variable velocity ;(x) of the external #owstream.

3.1. Transformation of the governing equations

The "rst step in the development of this method
is to transform the governing equations from the
x, y coordinate system to �, 	 system. The coordi-
nate 	, which involves both x and y would be
a similarity variable if the boundary-layer were
similar. However, � is related to x alone and is so
chosen that x does not appear explicitly in the
transformed equations. As Sparrow and Yu [41]
indicate: `the transformation tends to remove the
streamwise dependence associated with the natural
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growth of the boundary layer, such as occurs for
similarity boundary layer. Therefore, the remaining
streamwise dependence is due to the non-sim-
ilarity.a Hence, in general, x and y could be trans-
formed to � and 	 by

xP�"Hx�, yP	"Gyx�, (25)

where H, a, C, and r are constants to be deter-
mined. Let us introduce the generalized stream
function � as

�"Dx	f (�, 	) (26)

and dimensionless temperature � as

�(�, 	)"
¹!¹

�
¹

�
!¹

�
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where D and s are to be determined. Noting that
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!��
�x
, (28)

the conservation of mass, Eq. (20) is identically
satis"ed.
The mainstream velocity, the surface mass injec-
tion velocity and wall temperature variations are
considered to be of the arbitrary power-law forms.
Therefore,
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v
�
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¹
�
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where A, C
�
, B, m, t, p, and ¹

�
are constants.

Substituting Eqs. (25)}(31), using (13) and (14)
into (20)}(24) yields
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3.2. Similarity solutions for special cases

For the sake of completeness and comparison
with local similarity and local non-similarity
methods, in this section we attempt to "nd the
conditions at which similar solutions may exist for
certain special cases. With the following trans-
formations, noting that 	 is now the similarity vari-
able,

	"Cyx�, �"Dx	f (	), �(	)"
¹!¹

�
¹

�
!¹

�

(37)

with

¹
�

!¹
�

"Bx�, ;(x)"Ax�, v
�

"C
�
x
, (38)
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the governing equations (21) and (22) and the
boundary conditions reduce to

( f �)���f ��#
s

(Kn/�)C����D���
x�������	��	��+ �

!

r#s
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C

�
Ds�x
�	��, (41b)

f �(R)"1, (41c)

�(0)"1, �(R)"0. (42)

To have similarity solutions, it is required that the
exponents of x in (39)}(41b) must vanish, that is,

r!2nr#2s!ns!1"0, (43a)

2m!1!2nr!ns"0, (43b)

s!r!1"0, (43c)

t!s#1"0. (43d)

Solving for r and s from (43a) and (43b) gives

r"
m(2!n)!1

n#1
, s"

1!m(1!2n)

n#1
. (44)

It follows immediately by substituting (44) into
(43c) and (43a) that similarity solutions exist only
for the following two special cases:
(i) when the #uid is Newtonian (n"1.0):

t"
m!1

2
for n"1.0, (45)

(ii) when the #uid is non-Newtonian:

t"!

1

3
, m"

1

3
for arbitrary n. (46)

These restrictions agree with the case of Newtonian
#ow past a #at plate (n"1 and m"0) reported by
Hartnett and Eckert [46] and the case of non-
Newtonian #ow over a right-angle wedge (m"�

�
)

studied by Lee and Ames [37].

3.3. Local similarity solutions

As was just indicated, the energy equation with
injection at the surface admits similarity solution
for a few restricted cases. Before proceeding with
the local non-similarity solution method, it is useful
to review the method of local similarity. According
to this approach, the right-hand sides of Eqs.
(32)}(34b) are assumed to be small enough so that
they could be approximated by zero. Hence, the
boundary-layer equations and the boundary condi-
tions become

( f �)���f ��#�+ �#�[1!f ��]"0, (47)

�
1

Pr���#2��	����	��(sf��!Pf ��)"0 (48)

with

f (�, 0)"!�, f �(�, 0)"0, f �(�,R)"1 (49)

and

�(�, 0)"1, �(�,R)"0. (50)

The quantity � may be regarded as a constant
parameter at any streamwise location. Thus Eqs.
(47) and (48) can be treated as ordinary di!erential
equations and solved at di!erent locations � using
a modi"ed version of the scheme developed by
Nachtsheim and Swigert [47]. It should be noted
that the solution corresponding to a given particu-
lar � is independent of the solution at any other �.
As a result, the accuracy of the results is uncertain
as � increases. In fact, it is quite poor at large
injection rates (large �) [39,41].

3.4. Local non-similarity solutions

Using the method of local non-similarity (cf.
[39]), let

g(�, 	)"
�f (�, 	)

��
(51)
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and

h(�, 	)"
��(�,	)

��
. (52)

Substituting these quantities into the governing
equations and boundary conditions, (32)}(36), gives
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where again primes denote di!erentiation with re-
spect to 	. Next, Eqs. (53)}(56) are di!erentiated
with respect to �, yielding
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with

h(�, 0)"0, h(�,R)"0. (60)

Eqs. (57)}(60) serve as auxiliaries to the govern-
ing equations with their boundary equations
(53)}(56). As discussed by Sparrow and Yu [41], it
is assumed that the right-hand side of the auxiliary
equations (57), (58b), and (59), are su$ciently small
so that they may be neglected. With the above
assumption, the momentum boundary-layer equa-
tion (53) and its auxiliary equation (57) could be
brought together with their boundary conditions as

( f �)���f ��#�+ �#�(1!f ��)"
a�

s
�( f �g�!f �g),

(61)

( f �)���g��#[(n!1)( f �)���f ��#�f ]g�

!�2�#

a�

s � f �g�#��#

a�

s � f �g"0 (62)

with

f (�, 0)"!

s

a#s
�, g(�, 0)"!

s

a#s
,

f �(�, 0)"0, g�(�, 0)"0, (63)

f �(�,R)"1, g�(�,R)"0. (64)

When � is regarded as a constant parameter, Eqs.
(61)}(64) may be treated as a system of ordinary
di!erential equations to be solved numerically.
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In a similar manner, the thermal boundary-layer
equation (55) and its auxiliary equation (59) could
be brought together with their boundary condi-
tions as

�
1

Pr���#2��	����	��(sf��!pf ��)

"2a�	������	��( f �h!��g), (65)

�
1

Pr�h�#2��	����	��sf h�!2(p#s#a!r!1)

���	����	��f �h#2��	����	����
s!r!1

a �
s

�
f

#(2s!r#a!1)g���

!2p��	����	����
s!r!1

a �
1

�
f �#g���"0 (66)

with

�(�, 0)"1, h(�, 0)"0, (67)

�(�,R)"0, h(�,R)"0. (68)

Again for a "xed value of �, Eqs. (67)}(68) may be
treated as a set of ordinary di!erential equations,
with the velocity functions f, f �, g, and g� as input.
A description of the numerical scheme developed to
solve the above equations is given in Massoudi
[48].

4. Results and discussion

4.1. Velocity proxles and skin-friction coezcient

The governing equations for the #uid velocity
distribution, Eqs. (61) and (62) with boundary con-
ditions (63)}(64) are solved using a modi"ed version
of the scheme developed by Nachtsheim and
Swigert [47]. Numerical results are obtained for
three #ow indices, n"0.5, 1.0, 1.2, two injection
indices t"0, 1.0, and two wedge angles, m"0, �

�
.

The dimensionless velocity pro"les are shown in
Figs. 2a}c for a constant #uid injection (t"0) and
in Figs. 3a}c for a linear injection (t"1.0). As

expected in both cases, the velocity boundary layers
over a right-angle wedge (m"�

�
) are thinner than

those along a #at plate (m"0). The e!ect of the
#uid injection is also clearly shown. At "xed values
of m, n, and t, the wall slope of these curves, and
hence the wall friction, decreases with increasing
injection. This trend is more pronounced for the
pseudoplastic #uid (n"0.5) than for the dilatant
#uid (n"1.2).
Fig. 4 shows the e!ects of t and � on the dimen-
sionless velocity pro"les for the case of a Newto-
nian #uid (n"1.0) past a #at plate (m"0.0). It is
noted that the injection index t represents the vari-
ation of injection along the wall, whereas the injec-
tion parameter � represents the dimensionless
injection rate with a prescribed wall injection vari-
ation. It is seen from Fig. 4 that t and � have
a signi"cant destabilizing e!ect on the velocity dis-
tribution. The successive pro"les become increas-
ingly S-shaped with increasing � or decreasing t.
Physically, this trend is due to the gradual lift-o! of
the boundary-layers at higher injection rates or
with the variation changes from linear injection
(t"1.0) to negative-exponent injections (t"!�

�
and !�

�
).

The local skin-friction coe$cient C
��
is cal-

culated from the following equation:

C
��

"

(�
��
)
��

(1/2)�u�

"�
2

R
��
�

������	
[1#m(2n!1)]������	[ f �(�, 0)]�,

(69)

where R
��

"(�/K);���x� is the Reynolds number.
The results are shown in Fig. 5. The coe$cient
decreases as the injection rate increases and C

��
in-

creases for the accelerated-#ow case (m"�
�
) as

compared to the #at plate case (m"0). These
trends are in agreement with those for Newtonian
boundary layer studies. For non-Newtonian #uids
studied here, it is observed that the local skin-fric-
tion coe$cient decreases with increasing n. As com-
pared to the case of uniform injection (t"0), the
e!ect of a linear-injection (t"1.0) becomes increas-
ingly signi"cant at higher wall injection rates.
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Fig. 2. (a) Dimensionless velocity pro"les for n"1.0 and t"0. (b) Dimensionless velocity pro"les for n"1.0 and t"0.
(c) Dimensionless velocity pro"les for n"1.2 and t"0.

4.2. Thermal characteristics

The governing equations for the #uid temper-
ature distribution, Eqs. (65) and (66) with boundary
conditions (67) and (68) are solved using a similar
scheme to the one just mentioned for the mo-
mentum boundary-layer equations. Numerical re-
sults are obtained for #uids with Prandtl numbers

0.7 and 10.0 for isothermal surfaces (p"0.0) and
surfaces with temperatures varying linearly with
x ( p"1.0).
The dimensionless temperature pro"les are pre-
sented in Figs. 6a}c for three cases of #ow behavior
indices at three di!erent values of the dimensionless
injection parameter � when m"�

�
, p"1.0, and

t"1.0. As anticipated, the thermal boundary layer
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Fig. 3. (a) Dimensionless velocity pro"les for n"0.5 and t"1.0. (b) Dimensionless velocity pro"les for n"1.0 and t"1.0.
(c) Dimensionless velocity pro"les for n"1.2 and t"1.0.

thickness decreases with increasing Prandtl num-
ber. Fig. 7 compares the temperature pro"les for
three #uids, n"0.5, 1.0, 1.2, over a #at plate (m"0)
and a right angle wedge (m"�

�
). The results are

presented for uniform injection, linear variation of
surface temperature and Prandtl number 0.7 at the
injection rate �"0.1. In the case of a #at plate,

the thermal boundary-layer thickness decreases
as the non-Newtonian power-law exponent n in-
creases. However, for the case of a right angle
wedge (accelerated #ow), m"�

�
, the reverse behav-

ior is observed.
The e!ects of injection index t, surface temper-
ature variation parameter p, and wedge angle
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Fig. 4. E!ect of non-uniform injection along a #at plate.

Fig. 5. Scaled local skin-friction coe$cients.

parameter m may better be presented by introduc-
ing the local Nusselt number,

Nu
�
"

h
�
x

k
, (70)

where h
�
is the local heat transfer coe$cient de-

"ned by

h
�
"

q

¹
�
!¹

�

. (71)

From Fourier's Law

q"!k
�¹

�y �
��

. (72)

Recalling that ¹
�

!¹
�

"Bx�, substituting
Eqs. (71) and (72) in (70) we obtain

Nu
�
"!�

Re
�
2 �

������	
[1#m(2n!1)]������	

���(�, 0). (73)

The variations of the Nu
�
with � are presented in

Fig. 8 for di!erent values ofm, p, t when n"1.0 and
Pr"10. The results clearly show the e!ect of injec-
tion index t. For a given value of m, for example
m"0.0, and for the isothermal case, p"0.0, with
uniform injection, t"0, the Nu

�
is reduced 68%

when � is increased from 0.01 to 0.2. Similar behav-
ior is observed for other values of m, p, and t, as
shown in Fig. 8. For the case of linear surface
temperature variation, p"1.0, the local heat trans-
fer coe$cients are higher than those of the isother-
mal case, p"0.0.
It is also noteworthy that for a given injection
index t and a given surface temperature parameter
p, the local Nusselt number is higher for the case of
accelerated #ow (m"�

�
) over a right-angle wedge

than for the case of a uniform #ow over a #at plate
(m"0).
Fig. 9 shows the e!ects of n, m, � and Pr on the
local Nusselt number. It increases with increasing
n for m"0 (#at plate), but decreases with increas-
ing n for m"�

�
(right-angle wedge). For "xed values

of n and m, it increases with increasing Pr as well as
with decreasing injection rate �, the latter increase
is much higher for Pr"10 than for 0.7.
It is noted that the energy equation, in general,
does not possess solution at �"0.0 except for the
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Fig. 6. (a) Dimensionless temperature pro"les for m"�
�
and n"0.5. (b) Dimensionless temperature pro"les for m"�

�
and n"1.0.

(c) Dimensionless temperature pro"les for m"�
�
and n"1.2.

cases when n"1 or m"�
�
. In Figs. 6a}c, and 8 the

results are presented at �"0.01.

5. Conclusions

Heat transfer and laminar boundary layer #ows
of a non-Newtonian #uid over a porous wedge is

studied. The free stream velocity, the injection velo-
city, and the surface temperature are assumed to be
varying functions of the streamwise coordinate x.
The non-Newtonian #uid model used is the power-
law, properly put in the framework of #uids of
di!erential type. Similarity, local similarity, and lo-
cal non-similarity techniques are discussed, and
various restrictions on velocity, temperature, and
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Fig. 7. Comparison of temperature pro"les for di!erent values
of m and n.

Fig. 8. Scaled local Nusselt number for n"1.0 and Pr"10.0.

Fig. 9. Scaled local Nusselt number vs. n.

injection velocity parameters are also obtained.
The e!ect of injection on drag reduction and the
local heat transfer coe$cient at the wall are also
studied.
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